PolyMatrix compounds are long standing, time proven formulas responsible for championship winning performance in all types of amateur and professional motorsports. While time and technology advances have surpassed some of the earlier formulas, champion race teams at all levels still rely on PolyMatrix for its unyielding performance within their respective temperature and friction ranges.

PolyMatrix A X-High Temperature & Friction
- Long wearing, highest friction formula with immediate aggressive response at all temperatures
- Severe duty use for oval tracks, road courses, and all other types of competition only applications

PolyMatrix H X-High Temperature & Friction
- Long wearing, high friction formula with a softer, less aggressive initial engagement response than “A”
- Severe duty use for oval track, road courses, and all other competition only applications

PolyMatrix B High Temperature & Friction
- Traditional favorite used in a wide range of sportsman oval track, road course, and off-road competition categories
- Consistent, predictable response through the temperature range after minimal warm up

PolyMatrix E Medium Temperature & Friction
- Mid-level race compound with consistent, linear response through its full effective temperature range
- High momentum dirt tracks, fast drag cars, auto-cross, rally, and all types of off-road within its effective heat range

PolyMatrix Q Low-Medium Temperature & Friction
- Improved friction ceramic enhanced performance compound
- Lowest dust and noise levels for street performance
- Fully compatible compound for aluminum racing rotors

PolyMatrix compounds are long standing, time proven formulas responsible for championship winning performance in all types of amateur and professional motorsports. While time and technology advances have surpassed some of the earlier formulas, champion race teams at all levels still rely on PolyMatrix for its unyielding performance within their respective temperature and friction ranges.

PolyMatrix A X-High Temperature & Friction
- Long wearing, highest friction formula with immediate aggressive response at all temperatures
- Severe duty use for oval tracks, road courses, and all other types of competition only applications

PolyMatrix H X-High Temperature & Friction
- Long wearing, high friction formula with a softer, less aggressive initial engagement response than “A”
- Severe duty use for oval track, road courses, and all other competition only applications

PolyMatrix B High Temperature & Friction
- Traditional favorite used in a wide range of sportsman oval track, road course, and off-road competition categories
- Consistent, predictable response through the temperature range after minimal warm up

PolyMatrix E Medium Temperature & Friction
- Mid-level race compound with consistent, linear response through its full effective temperature range
- High momentum dirt tracks, fast drag cars, auto-cross, rally, and all types of off-road within its effective heat range

PolyMatrix Q Low-Medium Temperature & Friction
- Improved friction ceramic enhanced performance compound
- Lowest dust and noise levels for street performance
- Fully compatible compound for aluminum racing rotors

PolyMatrix compounds are long standing, time proven formulas responsible for championship winning performance in all types of amateur and professional motorsports. While time and technology advances have surpassed some of the earlier formulas, champion race teams at all levels still rely on PolyMatrix for its unyielding performance within their respective temperature and friction ranges.

PolyMatrix A X-High Temperature & Friction
- Long wearing, highest friction formula with immediate aggressive response at all temperatures
- Severe duty use for oval tracks, road courses, and all other types of competition only applications

PolyMatrix H X-High Temperature & Friction
- Long wearing, high friction formula with a softer, less aggressive initial engagement response than “A”
- Severe duty use for oval track, road courses, and all other competition only applications

PolyMatrix B High Temperature & Friction
- Traditional favorite used in a wide range of sportsman oval track, road course, and off-road competition categories
- Consistent, predictable response through the temperature range after minimal warm up

PolyMatrix E Medium Temperature & Friction
- Mid-level race compound with consistent, linear response through its full effective temperature range
- High momentum dirt tracks, fast drag cars, auto-cross, rally, and all types of off-road within its effective heat range

PolyMatrix Q Low-Medium Temperature & Friction
- Improved friction ceramic enhanced performance compound
- Lowest dust and noise levels for street performance
- Fully compatible compound for aluminum racing rotors

PolyMatrix compounds are long standing, time proven formulas responsible for championship winning performance in all types of amateur and professional motorsports. While time and technology advances have surpassed some of the earlier formulas, champion race teams at all levels still rely on PolyMatrix for its unyielding performance within their respective temperature and friction ranges.
**BEDDING STEPS FOR NEW PADS AND ROTORS**

Once the brake system has been tested and determined safe to operate the vehicle, follow these steps for the bedding of all new pad materials and rotors. These procedures should only be performed on a race track, or other safe location where you can safely and legally obtain speeds up to 65 MPH, while also being able to rapidly decelerate.

- Begin with a series of light decelerations to gradually build some heat in the brakes. Use an on-and-off the pedal technique by applying the brakes for 3-5 seconds, and then allow them to fully release for a period roughly twice as long as the deceleration cycle. If you use a 5 count during the deceleration interval, use a 10 count during the release to allow the heat to sink into the pads and rotors.
- After several cycles of light stops to begin warming the brakes, proceed with a series of medium to firm deceleration stops to continue raising the temperature level in the brakes.
- Finish the bedding cycle with a series of 8-10 hard decelerations from 55-65 MPH down to 25 MPH while allowing a proportionate release and heat-sinking interval between each stop. The pads should now be providing positive and consistent response.
- If any amount of brake fade is observed during the bed-in cycle, immediately begin the cool down cycle.
- Drive at a moderate cruising speed, with the least amount of brake contact possible, until most of the heat has dissipated from the brakes. Avoid sitting stopped with the brake pedal depressed to hold the car in place during this time. Park the vehicle and allow the brakes to cool to ambient air temperature.

**COMPETITION VEHICLES**

- If your race car is equipped with brake cooling ducts, blocking them will allow the pads and rotors to warm up quicker and speed up the bedding process.
- Temperature indicating paint on the rotor and pad edges can provide valuable data regarding observed temperatures during the bedding process and subsequent on-track sessions. This information can be highly beneficial when evaluating pad compounds and cooling efficiencies.

**POST-BEDDING INSPECTION – ALL VEHICLES**

- After the bedding cycle, the rotors should exhibit a uniformly burnished finish across the entire contact face. Any surface irregularities that appear as smearing or splotching on the rotor faces can be an indication that the brakes were brought up to temperature too quickly during the bedding cycle. If the smear doesn’t blend away after the next run-in cycle, or if chatter under braking results, sanding or resurfacing the rotors will be required to restore a uniform surface for pad contact.

**PRE-RACE WARM UP**

- Always make every effort to get heat into the brakes prior to each event. Use an on-and-off the pedal practice to warm the brakes during the trip to the staging zone, during parade laps before the flag drops, and every other opportunity in an effort to build heat in the pads and rotors. This will help to ensure best consistency, performance, and durability from your brakes.

**NOTE:** NEVER allow the contact surfaces of the pads or rotors to be contaminated with brake fluid. Always use a catch bottle with a hose to prevent fluid spill during all brake bleeding procedures.

**DYNO BEDDING SERVICES**

On-track time to properly bed new pads and rotors often comes at a high premium. In some cases, the time doesn’t exist at all. Wilwood Dyno-Bedding services provide racers with the ability to install pre-bedded pads and rotors and hit the track fully race ready. Wilwood stocks many of our popular race pad and rotor combinations pre-bedded and ready for immediate shipment. These part numbers are identified with “B” at the end of the part number. For pads or rotors that are not normally in-stock, special orders are welcome. Contact a dealer or our tech-sales department for information and availability of pads and rotors for your race car.

**NUCAP RETENTION BACKING PLATES**

The patented Nucap Retention System provides the most durable and positive method of securing the pad friction material to the pad backing plate. Originally developed to eliminate friction separation on extreme load heavy construction equipment, Wilwood pioneered the adaptation of the NRS plates for racing, and uses it exclusively with all of our race compounds, and several of our dual-purpose compounds. NRS plates eliminate the need for IM anchoring holes, bonding agents, rivets, and other less effective mechanical retention methods. Solid backing plates, without anchoring holes, reduce flex and the potential subsequent separation of the friction from the plate as the pads wear. Simply stated, there is no better way to anchor the friction block and prevent pad delamination than NRS.

---

**WARNING**

Do not use high temperature race pads for low to medium temperature driving on the street. In addition to undesirable driving qualities, it can also cause damage and premature wear to both the pads and rotors.

---

**DYNO BEDDING SERVICES**

On-track time to properly bed new pads and rotors often comes at a high premium. In some cases, the time doesn’t exist at all. Wilwood Dyno-Bedding services provide racers with the ability to install pre-bedded pads and rotors and hit the track fully race ready. Wilwood stocks many of our popular race pad and rotor combinations pre-bedded and ready for immediate shipment. These part numbers are identified with “B” at the end of the part number. For pads or rotors that are not normally in-stock, special orders are welcome. Contact a dealer or our tech-sales department for information and availability of pads and rotors for your race car.

**NUCAP RETENTION BACKING PLATES**

The patented Nucap Retention System provides the most durable and positive method of securing the pad friction material to the pad backing plate. Originally developed to eliminate friction separation on extreme load heavy construction equipment, Wilwood pioneered the adaptation of the NRS plates for racing, and uses it exclusively with all of our race compounds, and several of our dual-purpose compounds. NRS plates eliminate the need for IM anchoring holes, bonding agents, rivets, and other less effective mechanical retention methods. Solid backing plates, without anchoring holes, reduce flex and the potential subsequent separation of the friction from the plate as the pads wear. Simply stated, there is no better way to anchor the friction block and prevent pad delamination than NRS.

---

**COMPETITION VEHICLES**

- If your race car is equipped with brake cooling ducts, blocking them will allow the pads and rotors to warm up quicker and speed up the bedding process.
- Temperature indicating paint on the rotor and pad edges can provide valuable data regarding observed temperatures during the bedding process and subsequent on-track sessions. This information can be highly beneficial when evaluating pad compounds and cooling efficiencies.

**POST-BEDDING INSPECTION – ALL VEHICLES**

- After the bedding cycle, the rotors should exhibit a uniformly burnished finish across the entire contact face. Any surface irregularities that appear as smearing or splotching on the rotor faces can be an indication that the brakes were brought up to temperature too quickly during the bedding cycle. If the smear doesn’t blend away after the next run-in cycle, or if chatter under braking results, sanding or resurfacing the rotors will be required to restore a uniform surface for pad contact.

**PRE-RACE WARM UP**

- Always make every effort to get heat into the brakes prior to each event. Use an on-and-off the pedal practice to warm the brakes during the trip to the staging zone, during parade laps before the flag drops, and every other opportunity in an effort to build heat in the pads and rotors. This will help to ensure best consistency, performance, and durability from your brakes.

**NOTE:** NEVER allow the contact surfaces of the pads or rotors to be contaminated with brake fluid. Always use a catch bottle with a hose to prevent fluid spill during all brake bleeding procedures.

---

**BEDDING STEPS FOR NEW PADS AND ROTORS**

Once the brake system has been tested and determined safe to operate the vehicle, follow these steps for the bedding of all new pad materials and rotors. These procedures should only be performed on a race track, or other safe location where you can safely and legally obtain speeds up to 65 MPH, while also being able to rapidly decelerate.

- Begin with a series of light decelerations to gradually build some heat in the brakes. Use an on-and-off the pedal technique by applying the brakes for 3-5 seconds, and then allow them to fully release for a period roughly twice as long as the deceleration cycle. If you use a 5 count during the deceleration interval, use a 10 count during the release to allow the heat to sink into the pads and rotors.
- After several cycles of light stops to begin warming the brakes, proceed with a series of medium to firm deceleration stops to continue raising the temperature level in the brakes.
- Finish the bedding cycle with a series of 8-10 hard decelerations from 55-65 MPH down to 25 MPH while allowing a proportionate release and heat-sinking interval between each stop. The pads should now be providing positive and consistent response.
- If any amount of brake fade is observed during the bed-in cycle, immediately begin the cool down cycle.
- Drive at a moderate cruising speed, with the least amount of brake contact possible, until most of the heat has dissipated from the brakes. Avoid sitting stopped with the brake pedal depressed to hold the car in place during this time. Park the vehicle and allow the brakes to cool to ambient air temperature.

**COMPETITION VEHICLES**

- If your race car is equipped with brake cooling ducts, blocking them will allow the pads and rotors to warm up quicker and speed up the bedding process.
- Temperature indicating paint on the rotor and pad edges can provide valuable data regarding observed temperatures during the bedding process and subsequent on-track sessions. This information can be highly beneficial when evaluating pad compounds and cooling efficiencies.

**POST-BEDDING INSPECTION – ALL VEHICLES**

- After the bedding cycle, the rotors should exhibit a uniformly burnished finish across the entire contact face. Any surface irregularities that appear as smearing or splotching on the rotor faces can be an indication that the brakes were brought up to temperature too quickly during the bedding cycle. If the smear doesn’t blend away after the next run-in cycle, or if chatter under braking results, sanding or resurfacing the rotors will be required to restore a uniform surface for pad contact.

**PRE-RACE WARM UP**

- Always make every effort to get heat into the brakes prior to each event. Use an on-and-off the pedal practice to warm the brakes during the trip to the staging zone, during parade laps before the flag drops, and every other opportunity in an effort to build heat in the pads and rotors. This will help to ensure best consistency, performance, and durability from your brakes.

**NOTE:** NEVER allow the contact surfaces of the pads or rotors to be contaminated with brake fluid. Always use a catch bottle with a hose to prevent fluid spill during all brake bleeding procedures.